admin

Минковский

Минковский (Minkowski) Герман (22.6.1864, Алексоты Минской губернии, — 12.1.1909, Гёттинген) - немецкий математик и физик.

Профессор университетов в Бонне (с 1893), Кенигсберге (с 1894), Цюрихе (с 1896), Гёттингене (с 1902).

Минковский разработал т. н. геометрию чисел, в которой употребляются геометрические методы решения трудных вопросов теории чисел. Геометрию чисел одновременно с Минковским и независимо от него разрабатывал Г. Ф. Вороной. Работы их дополняют друг друга.

От геометрии чисел Минковский перешёл к работам по теории многогранников и геометрии выпуклых тел, где им были получены важные общие результаты. Минковский — автор работ по математической физике, гидродинамике и теории капиллярности, теории относительности. В 1907—08 дал геометрическую интерпретацию кинематики специальной теории относительности, введя т. н. Минковского пространство.

Пространство Минковского

Минковского пространство - четырёхмерное пространство, объединяющее физическое трёхмерное пространство и время; введено Г. Минковским в 1907—1908. Точки в Минковского пространстве, соответствуют «событиям» специальной теории относительности.

Положение события в Минковского пространство, задаётся четырьмя координатами — тремя пространственными и одной временной. Обычно используются координаты x1 = х, x2 = у, х3 = z, где х, у, z — прямоугольные декартовы координаты события в некоторой инерциальной системе отсчёта, и координата x0= ct, где t — время события, с — скорость света. Вместо xo можно ввести мнимую временную координату x4= ix0= ict.

Из специальной теории относительности следует, что пространство и время не независимы: при переходе от одной инерциальной системы отсчёта к другой пространственные координаты и время преобразуются друг через друга посредством Лоренца преобразований. Введение Минковского пространство, позволяет представить преобразования Лоренца как преобразование координат события x1, x2, x3, x4 при поворотах четырёхмерной системы координат в этом пространстве.

Геометрия Минковского пространства, позволяет наглядно интерпретировать кинематические эффекты специальной теории относительности (изменение длин и скорости течения времени при переходе от одной инерциальной системы отсчёта к другой и т. д.) и лежит в основе современного математического аппарата теории относительности.