Принцип двойственности
Двойственности принцип - принцип, формулируемый в некоторых разделах математики и заключающийся в том, что каждому верному утверждению этого раздела отвечает двойственное утверждение, которое может быть получено из первого путём замены входящих в него понятий на другие, т. н. двойственные им понятия.
1) Двойственности принцип, формулируется в проективной геометрии на плоскости. При этом двойственными понятиями являются, например, «точка» и «прямая», «точка лежит на прямой» и «прямая проходит через точку». Каждой аксиоме в проективной геометрии на плоскости формулируется двойственное предложение, которое может быть доказано с помощью этих же аксиом (этим обосновывается Двойственности принцип, в проективной геометрии на плоскости). Двойственными утверждениями в проективной геометрии на плоскости являются известные теоремы Паскаля и Брианшона. Первая из этих теорем утверждает, что во всяком шестивершиннике, вписанном в линию 2-го порядка, точки пересечения противоположных сторон лежат на одной прямой. Вторая теорема утверждает, что во всяком шестистороннике, описанном около линии 2-го порядка, прямые, соединяющие противоположные вершины, пересекаются в одной точке.
2) Двойственности принцип, в абстрактной теории множеств. Пусть дано множество М. Рассмотрим систему всех его подмножеств А, В, С и т.д. Справедливо следующее предложение: если верна теорема о подмножествах множества М, которая формулируется лишь в терминах операций суммы, пересечения и дополнения, то верна также и теорема, получающаяся на данной путём замены операции суммы и пересечения соответственно операциями пересечения и суммы, пустого множества L — всем множеством М, а множества М — пустым множеством L. При этом дополнение суммы заменяется пересечением дополнений, а дополнение пересечения — суммой дополнений.
3) Двойственности принцип, имеет место в математической логике (в исчислении высказываний и в исчислении предикатов).