admin

Призма и пирамида


    Подобно тому, как треугольник в понимании Евклида не являются пустым, т. е. представляет собой часть плоскости, ограниченную тремя неконкурентными (т. е. не пересекающимися в одной точке) отрезками, так и многогранник у него не пустой, не полый, а чем-то заполненный (по-нашему - частью пространства). В античной математике, однако, понятия отвлеченного пространства еще не было. Евклид определяет призму как телесную фигуру, заключенную между двумя равными и параллельными плоскостями (основаниями) и с боковыми гранями - параллелограммами.

Для того чтобы это определение было вполне корректным, следовало бы, однако, доказать, что плоскости, проходящие через пары непараллельных сторон оснований, пересекаются по параллельным прямым. Евклид употребляет термин “плоскость” как в широком смысле (рассматривая ее неограниченно продолженной во все направления), так и в смысле конечной, ограниченной ее части, в частности грани, аналогично применению им термина “прямая” (в широком смысле - бесконечная прямая и в узком - отрезок). В XVIII в. Тейлор дал такое определение призмы: это многогранник, у которого все грани, кроме двух, параллельны одной прямой.


    Пирамиду Евклид определяет как телесную фигуру, ограниченную плоскостями, которые от одной плоскости (основания) сходятся в одной точке (вершине). Эго определение подвергалось критике уже в древности, например, Героном, предложившим следующее определение пирамиды: это фигура, ограниченная треугольниками, сходящимися в одной точке, и основанием которой служит многоугольник.


    Важнейшим недостатком этого определения является использование неопределенного понятия основания. Тейлор определил пирамиду как многогранник, у которого все грани, кроме одной, сходятся в одной точке. Лежандр в “Элементах геометрии” так определяет пирамиду: “Телесная фигура, образованная треугольниками, сходящимися в одной точке и заканчивающаяся на различных сторонах плоского основания”. После этой формулировки разъясняется понятие основания. Определение Лежандра является явно избыточным, т.е. содержит признаки, которые можно вывести из других. А вот еще одно определение, которое фигурировало в учебниках ХIХ в.: пирамида - телесный угол, пересеченный плоскостью.


    Еще в древности существовали два пути определения геометрических понятий. Первый вел от фигур высшего порядка к фигурам низшего. Такой точки зрения придерживался, в частности, Евклид, определяющий поверхность как границу тела, линию - как границу поверхности, концы же линии - как точки. Второй путь ведет, наоборот, от фигур низшего измерения к фигурам высшего: движением точки образуется линия, аналогично из линий составляется поверхность и т. д. Одним из первых, который соединил обе эти точки зрения, был Герон Александрийский, писавший, что тело ограничивается поверхностью и вместе с этим может быть рассмотрено как образованное движением поверхности. В появившихся позже на протяжении веков учебниках геометрии принималась за основу то одна, то другая, а иногда и обе вместе точки зрения.