Симметрия
В геометрии - свойство геометрических фигур. Две точки, лежащие на одном перпендикуляре к данной плоскости (или прямой) по разные стороны и на одинаковом расстоянии от нее, называются симметричными относительно этой плоскости (или прямой). Фигура (плоская или пространственная) симметрична относительно прямой (оси симметрии) или плоскости (плоскости симметрии), если ее точки попарно обладают указанным свойством. Фигура симметрична относительно точки (центр симметрии), если ее точки попарно лежат на прямых, проходящих через центр симметрии, по разные стороны и на равных расстояниях от него.
Определение симметрии
Понятие "симметрия" (греч. symmetria - соразмерность), по словам одного из крупнейших математиков ХХ в. Германа Вейля (1885 - 1955), "является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство". Обычно под словом "симметрия" понимается гармония пропорций - нечто уравновешенное, не ограниченное пространственными объектами (например, в музыке, поэзии и т.п.). С другой стороны, это понятие имеет и чисто геометрический смысл, заключающийся в закономерной повторяемости в пространстве равных фигур или их частей. Как писал Е.С.Федоров (1901), "симметрия есть свойство геометрических фигур повторять свои части, или, выражаясь точнее, свойство их в различных положениях приходить в совмещение с первоначальным положением".
Однако, говоря о симметричных фигурах, следует различать два вида равенства: конгруэнтное (греч. congruens - совмещающийся) и энантиоморфное - зеркально равное (греч. enantios - противоположный, morphe - форма). В первом случае подразумеваются фигуры или их части, равенство которых можно выявить простым совмещением - наложением друг на друга, т.е. "собственным" движением, переводящим левую (Л) фигуру (например, левый винт, руку) в левую, правую (П) - в правую, при котором все точки одной фигуры совпадают с соответствующими точками другой. Во втором случае - равенство выявляется с помощью отражения - движения, переводящего объект в его зеркальное изображение (левое - в правое и наоборот).
При этом все точки пространственной фигуры становятся попарно симметричными относительно плоскости. В результате таких преобразований (движений) объект совмещается сам с собой, т.е. преобразуется в себя. Иными словами, он инвариантен по отношению к этому преобразованию, а следовательно, симметричен. Само преобразование, выявляющее симметричность объекта, называемое преобразованием симметрии, сохраняет неизменными метрические свойства частей объекта, а значит, и расстояния между любой парой их точек. Таким образом, объекты можно считать симметрично равными, если все точки одного из них переводятся в соответствующие точки другого по единому правилу.