Зарождение математики
Известно, что греческая цивилизация на начальном этапе своего развития отталкивалось от цивилизации древнего Востока. Каково же было математическое наследство, полученное греками?
Из дошедших до нас математических документов можно заключить, что в Древнем Египте были сильно отрасли математики, связанные с решением экономических задач. Папирус Райнда (ок. 2000 г. до н. э.) начинался с обещания научить «совершенному и основательному исследованию всех вещей, пониманию их сущностей, познанию всех тайн». Фактически излагается искусство вычисления с целыми числами и дробями, в которое посвящались государственные чиновники для того, чтобы уметь решать широкий круг практических задач, таких, как распределение заработной платы между известным числом рабочих, вычисление количества зерна для приготовления такого-то количества хлеба, вычисление поверхностей и объемов и т. д. Дальше уравнений первой степени и простейших квадратных уравнений египтяне, по-видимому, не пошли. Все содержание известной нам египетской математики убедительно свидетельствует, что математические знания египтян предназначались для удовлетворения конкретных потребностей материального производства и не могли сколько-нибудь серьезно быть связанными с философией.
Математика Вавилона, как и египетская, была вызвана к жизни потребностями производственной деятельности, поскольку решались задачи, связанные с нуждами орошения, строительства, хозяйственного учета, отношениями собственности, исчислением времени. Сохранившиеся документы показывают, что, основываясь на 60-ричной системе счисления, вавилоняне могли выполнять четыре арифметических действия, имелись таблицы квадратных корней, кубов и кубических корней, сумм квадратов и кубов, степеней данного числа, были известны правила суммирования прогрессий. Замечательные результаты были получены в области числовой алгебры. Хотя вавилоняне и не знали алгебраической символики, но решение задач проводилось по плану, задачи сводились к единому «нормальному» виду и затем решались по общим правилам, причем истолкование преобразований «уравнения» не связывалось с конкретной природой исходных данных. Встречались задачи, сводящиеся к решению уравнений третьей степени и особых видов уравнений четвертой, пятой и шестой степени.
Если же сравнивать математические науки Египта и Вавилона по способу мышления, то нетрудно будет установить их общность по таким характеристикам, как авторитарность, некритичность, следование за традицией, крайне медленная эволюция знаний. Эти же черты обнаруживаются и в философии, мифологии, религии Востока. Как писал по этому поводу Э. Кольман, «в этом месте, где воля деспота считалась законом, не было места для мышления, доискивающегося до причин и обоснований явлений, ни тем более для свободного обсуждения».
Анализ древнегреческой математики и философии следует начать с милетской математической школы, заложившей основы математики как доказательной науки.
Спасибо большое очень интерестно