admin

Уравнения

В алгебре рассматриваются два вида равенств – тождества и уравнения.

Тождество – это равенство, которое выполняется при всех (допустимых) значениях входящих в него букв.

Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв.

Буквы, входящие в уравнение, могут быть неравноправными: одни могут принимать все свои допустимые значения, которые называют коэффициентами (иногда – параметрами) уравнения, другие, значения которых требуется отыскать, называют неизвестными данного уравнения (как правило, их обозначают последними буквами латинского алфавита x, y, z, u, v, w, или теми же буквами, снабженными индексами.

Уравнения бывают:
Квадратные уравнения
Рациональные уравнения
Уравнения, содержащие переменную под знаком модуля
Иррациональные уравнения
Показательные уравнения
Логарифмические уравнения

Системы уравнений:
Системы рациональных уравнений
Системы нелинейных уравнений
Симметрические системы
Смешанные системы

Посторонние корни, возникшие в процессе преобразований, можно выявить проверкой. Конечно, если все преобразования приводили нас к цепочке равносильных уравнений, то проверка необязательна. Однако этого не всегда можно добиться, легче следить за тем, чтобы каждое уравнение цепочки являлось следствием предыдущего, т.е. чтобы не происходила потеря корней. В этом случае проверка является элементом решения. Следует отметить, что часто легче сделать проверку, чем обосновать то, что в ней нет необходимости. Кроме того, проверка является средством контроля правильности проделанных вычислений. Иногда полезно поступать так: на каждом этапе решения уравнения определять промежутки, в которых могут находиться корни уравнения. Все корни, не принадлежащие этим промежуткам, являются посторонними и должны быть отброшены. Однако остальные корни всё равно необходимо проверить подстановкой в исходное уравнение.

Каждое алгебраическое уравнение всегда имеет хотя бы одно решение, действительное или комплексное.

В аналитической геометрии одно уравнение с двумя неизвестными интерпретируется при помощи кривой на плоскости, координаты всех точек которой удовлетворяют данному Уравнению. Одно Уравнение с тремя неизвестными интерпретируется при помощи поверхности в трёхмерном пространстве. При этой интерпретации решение системы Уравнение совпадает с задачей о разыскании точек пересечения линий, поверхностей и т.д. Уравнение с большим числом неизвестных интерпретируются при помощи многообразий в n-мерных пространствах.

Добро пожаловать!

Уравнения математической физики - дифференциальные уравнения с частными производными, а также некоторые родственные уравнения иных типов (интегральные, интегро-дифференциальные и т.д.), к которым приводит математический анализ физических явлений. Для теории Уравнения математической физики характерна постановка задач в таком виде, как это необходимо при исследовании физического явления. Круг Уравнения математической физики с расширением области применения математического анализа также неуклонно расширяется. При систематизации полученных результатов появляется необходимость включить в теорию Уравнения математической физики уравнения и задачи более общего вида, чем те, которые появляются при анализе конкретных явлений; однако и для таких уравнений и задач характерно то, что их свойства допускают более или менее наглядное физическое истолкование.

Уравнения химические - изображения реакций химических посредством знаков химических, формул химических, чисел и математических знаков. На возможность такого описания химических реакций указал в 1789 А. Лавуазье, основываясь на сохранения массы законе; однако всеобщее применение Уравнения химические получили только в 1-й половине 19 в.